BHAVAN'S VIVEKANANDA COLLEGE OF SCIENCE, HUMANITIES AND COMMERCE, SAINIKPURI, SECUNDERABAD.

Autonomous College Affiliated to OSMANIA UNIVERSITY, Hyderabad.

BSc I Year Electronics

SEMESTER I

Circuit Analysis

Unit-wise Lesson Plan for the academic year 2018-19

		No. of classes	Classes	Remarks
Unit	Topic	required	stipulated	
	AC Fundamentals	6		
	V-I Relation in R,L,C	4		
I	Combinations			
	Polar, Rectangular forms,			
	Complex numbers,	4	16	
	Circuit Analysis using complex			
	numbers			
	T and π networks and their	2		
	conversions.			
11	Kirchhoff's Laws, Nodal and	7	17	
	Mesh Analysis Network theorems	10	17	
	Transient response of RC and RL	10		
III	Transferit response of KC and KL	6		
111	circuits		13	
	Frequency response of RC and		15	
		7		
	RL circuits			
	Series and Parallel Resonance	7		
	Cathode ray Oscilloscope	7	14	
IV	Cambue ray Osemoscope			l

Possinee davanle 22/6/18.

....

st, of Physics & Electronic Sheratiya Vidya Bhavan s Vivekananda Collage walkpurt SecunderaDad-508 @\$4

Even Sen also.

BHAVAN'S VIVEKANANDA COLLEGE OF SCIENCE, HUMANITIES AND COMMERCE, SAINIKPURI, SECUNDERABAD. Autonomous College Affiliated to OSMANIA UNIVERSITY, Hyderabad. <u>BSc I Year Electronics</u> <u>SEMESTER I</u>

Circuit Analysis

Month	No. of classes scheduled	Topic proposed to be covered	No. of classes	Remarks
	(extra classes)	Periodic Waveforms, peak, average, RMS	required 2	
June	5	value, form factor, phase and phase difference		
		Phasor and 'J' operator	1	
		V-I relationship in circuits containing	2	
		R,L and C		
		Complex impedance, admittance Polar, and		
July		Rectangular forms Circuit Analysis using	3	
	16	complex numbers		
	•	Series and parallel combinations of R,L and C	2	
		T and π networks and their conversions.	3	
		KVL,KCL-problems	3	
		Nodal Analysis mesh analysis	5	
		Theorems	12	
August	12(2)	Transient response of RC circuit	2	
September	16	Transient response of RL circuit	2 4	
1	16	Types of filters, frequency response	4	
		Differentiator and Integrator	6	
		Series and parallel resonance		
October	3	Cathode Ray Oscilloscope	3	

Month -wise Lesson Plan for the academic year 2018-19

Lowa e. 22/6/18.

Provier

es, of Physics & Electronis Sharatiya Vidya Bhavan s Vivekananda Colloge statkpuri: Secunderabad-509 @#

Sem III Electronics - Analog Circuits

		Classes		Remarks
Unit	Topic	stipulated		
	Introduction - Diodes	3		
	Rectifiers – half wave, full wave, bridge	5	15	
Ι	Filters – Inductor, capacitor, L and π	5		
	Pspice	2		
	Zener - regulation	2		
II	Regulated power supplies – series and shunt	5	15	
	IC regulators - 78xx, 79xx	2		
	SMPS and UPS	4		
	Pspice	2		
	Transistor basics	2		
III	Classification of amplifiers	2		
	RC Coupled Amplifier	5	15 - cars	
	Feedback in amplifiers	4	15	
	emitter follower, Darlington pair	2		
	Oscillators – Barkhausen criteria	2		
	RC and LC and crystal oscillators	4		
IV	Multivibrators -astable, monostable, bistable	4	15	
	Schmitt trigger	2		
	Revision	3		

Unit-wise Lesson Plan for the academic year 2018-19

Month-wise organizer for the academic year 2018-19

Month	No. of classes scheduled	Topic proposed to be covered	No. of classes required	Remarks
June	7	Introduction, diodes	2	
		Rectifiers	6	
		Filters	6	
		Regulators- series, shunt	5	
	16	IC regulators,	4	
July	10	SMPS & UPS	4	
		Pspice	2	
August	12	Transistor basics, Amplifiers	4	
		RC Coupled Amplifier	5	
		Feedback	4	
September	16	emitter follower, Darlington pair	2	
		Oscillators	6	
		Multivibrators, Schmitt trigger	4	
October	3	Revision	2	

54

Mrs. M.Prasanna

Mr. T Prasad

Pornice

.

ev er Physics & Electration
 Charattiva Vidya Bhavadis
 Vivekananda Collage
 eleikourt Secunderabed-508 (200)

BHAVAN'S VIVEKANANDA COLLEGE OF SCIENCE, HUMANITIES AND COMMERCE, SAINIKPURI, SECUNDERABAD. Autonomous College Affiliated to OSMANIA UNIVERSITY, Hyderabad.

		No. of	Classes	Remarks
Unit	Topic	classes	stipulated	
		required		
	Boolean Algebra, De-morgan's theorem	4		
	Simplification Of Boolean Expressions			
Ι	Sum of products (SOP) Product of	4	11	
	sums(POS), Karnaugh maps minimization			
	Logic gates & Universal gates -multi level	3		
	implementation			
	Adders, Subtractors, Multiplexer, Dmultiplexer	5		
11	Decoder &Encoder	3	11	
	Parity checker & Parity generators	3		
	Latches, Flip -flops-RS,D,JK,T and	3		
III	Master slave		11	
	haster slave			
	Shift registers-Universal shift registers	3		
	Counters-Ring counter, Asynchronous and	5		
	Synchronous counters			
	Logic families –TTL and CMOS	3		
	Memory-classification, RAM, ROM	3	12	
1V	D/A and A/D converters	6		

SEMESTER V Digital Electronics Unit-wise Lesson Plan for the academic year 2018-19

Porriel Loware 9. 13/6/18

es, of Physics & Electrànie Bharatlya Vidya Bhavan s Vivekananda College Jaikpurt SecunderaDed-508 654

BHAVAN'S VIVEKANANDA COLLEGE OF SCIENCE, HUMANITIES AND COMMERCE, SAINIKPURI, SECUNDERABAD. Autonomous College Affiliated to OSMANIA UNIVERSITY, Hyderabad.

Month	No. of classes scheduled (extra classes)	Topic proposed to be covered	No. of classes required	Remarks
June		Boolean Algebra, De-morgan's theorem	3	
	6	Simplification Of Boolean Expressions SOP ,POS-and	3	
	12	Karnaugh maps	3	
July		Logic gates & Universal gates -multi	2	
		level implementation		
		Adders, Subtractor, MUX , DEMUX	5	11
		Decoder &Encoder	2	
		Parity checker & Parity generators	3	
August	10	Flip -flops-RS,D,JK,T and	3	
		Master slave		
		Counters-Ring counter, Asynchronous	4	
		and Synchronous counters		
0		Shift registers-Universal shift registers	4	
September	12	Logic families –TTL and CMOS	3 5	
		D/A and A/D converters	5	
October	3	Memory-classification, RAM,ROM	3	

SEMESTER V Digital Electronics Month-wise organizer for the academic year 2018-19

Porrie Lavare 13/6/18

el, of Physics & Electrissien Sharatiya Vidya Bhavan's Vivekananda College Halspuri, Secunderabad-509 @##

 \sim

		B Sc III Year Electronics - Semester V		
		Elective Paper - 8085 Microprocessor - EL524	4 A	8
•		Month wise lesson plan for 2018-19		
Month	Number of Classes Scheduled	Topics	Classes Required- Topic wise	Remarks
June	6	Introduction and Memory organization	5	
June	Julie 0	Architecture of Intel 8085	3	
		Pin configuration of 8085	2	
	12	Instruction set and Addressing modes	5	
July		Addition, Subtraction, Multiplication and Division	4	
		Largest / Smallest, arranging the data in Ascending and Descending order	4	
		Stack and Subroutines	2	
August	10	Time delays	3	
August	10	Software and Hardware Interrupts	2	
		Timing Diagrams	3	
		Data transfer schemes, PPI 8255	4	
Contombox	12	Keyboard and Display interfacing (8279)	3	
September	12	Seven segment LED interfacing	3	
		Stepper motor interfacing	2	
October	3 .	Revision		

	B Sc III Year El	ectronics - Semester	V	
	Elective Paper - 8085	Microprocessor - El	L524 A	
	Unit wise less	on plan for 2018-19		
Unit	Topic	No. of Classes required	Classes Stipulated	Remarks
	8085 Architecture			
1	Introduction and Memory organization	5		
1	Architecture of Intel 8085	3	10	
	Pin configuration of 8085	2		
	Programming 8085			
	Instruction set and Addressing modes	5		
2	Addition, Subtraction, Multiplication and Division	4	13	
	Largest / Smallest , arranging the data in Ascending and Descending order	4		
	Counter and Time Delays	6		
	Stack and Subroutines	2		
•	Time delays	3		
3	Interrupts		10	
	Software and Hardware Interrupts	2		
	Timing Diagrams	3		
	Interfacing Peripherals			
	Data transfer schemes, PPI 8255	4		
4	Keyboard and Display interfacing (8279)	3	12	
	Seven segment LED interfacing	3	1 -	-
	Stepper motor interfacing	2		

Mrs M Prasanna

Bos niek 2/7/2018

Mr TVLNH Prasad Mr TVLNH Prasad Sharatiya Vidya Bhavan's Vivekananda Colloga Maikouri Secunderabed-509 654

BHAVAN'S VIVEKANANDA COLLEGE OF SCIENCE, HUMANITIES AND COMMERCE , SAINIKPURI, SECUNDERABAD

Autonomous College

ACADEMIC ORGANIZER - 2018-2019

DEPARTMENT OF PHYSICS

PHYSICS- SEMESTER I

<u>Mechanics</u> Unit-wise Lesson Plan for the academic year 2018-2019

Unit	Торіс	Classes	Classes stipulated	
	Vector analysis	10		
	Newton's laws and Motion under	5		
Ι	different types of forces		15	
	Collisions	7		
II	Central forces	8	15	
	Mechanics of rigid bodies	8		
III	Mechanics of continuous media	7	15	
	Frames of reference and transformation	8		
	Consequences of relativistic	7	15	
IV	transformations			

Mrs Lakshmi Savita

PHYSICS- Semester II Waves and Oscillations

Unit-wise Lesson Plan for the academic year

Unit	Unit Topic		tipulated	Remarks
	Fundamental of vibration	7		
I	Superposition of Harmonic motions	8	15	
	Damped Oscillations	7		
II	Forced Oscillation	8	15	
	Fourier analysis of complex vibrations	8		
III	Ultrasonics	7	15	
	Vibrations of bars	8		
IV	Transverse and Longitudinal waves	7	15	

· Pormeik 26606/2018

Mrs V R MANJULA Mrs Lakshmi Savita

ak, α) ⊽hysics & Elecifasia Bharatiya Vidya Bhavan's V'vekananda Collage akouri SecunderaDed-509 €₽/

BHAVAN'S VIVEKANANDA COLLEGE OF SCIENCE, HUMANITIES AND COMMERCE , SAINIKPURI, SECUNDERABAD Autonomous College

ACADEMIC ORGANIZER - 2018-2019

DEPARTMENT OF PHYSICS

<u>PHYSICS- SEMESTER I Mechanics-PH123</u> Month-wise organizer for the academic year 2018-2019

Month	No. of classes scheduled	Topic proposed to be covered	Classes required	Remarks
June	5	Vector analysis- Introduction Gradient	5	
		of a scalar, Divergence and curl of a		
		vector.		
July	16	Stokes. Gauss and green theorem.	5	
		problems		
		Newton's laws -Laws of motion.	5	
		System of variable mass-Motion of		
		rocket, Motion under different forces.		
		Collisions- Collisions in two and three	6	
		dimensions, impact parameter, scattering		
		cross - section, Rutherford scattering,		
August	12	Central Forces characteristics Keplers laws	6	
		Mechanics of rigid bodies- Euler's		
		equation, Symmetric top and precessional	6	
		motion, Gyroscope		
September	16	Frames of reference and	4	
		transformation: Frames of reference		
		Galilean relativity, Michelson – Morley		
		experiment,		
		Consequences of relativistic		
		transformations Lorentz	8	
		transformation, time dilation, length		
		contraction, addition of velocities,		
		position and velocity as four vectors,		
		Energy momentum transformation		
		mass – energy relation		
		Mechanics of continuous media	4	
		Stress and strain relation, Elastic		
		constants, strains with examples,		
		Relation between y, n, k and σ .		
October	3	Catilever beam- depression in Uniform	3	
000000		and non uniform bending		
	52	0	52	

25/06 2018 Vivekananda Collage

BHAVAN'S VIVEKANANDA COLLEGE OF SCIENCE, HUMANITIES AND COMMERCE, SAINIKPURI, SECUNDERABAD Autonomous College- (Accredited with A grade by NAAC) ACADEMIC ORGANIZER - 2018-2019 DEPARTMENT OF PHYSICS

Semester III PAPER 323-- THERMODYNAMICS

Unit-wise Lesson Plan for the academic year 2018-2019

Unit	Торіс	Classes	Classes stipulated	
	Introduction to thermodynamics	7		
I	Second law of thermodynamics and Entropy	8	15	
II	Thermodynamic potentials and Maxwell's equations	8	15	
	Low temperature Physics	7	15	
III	Kinetic theory of gases	7	15	
	Statistical Mechanics	8	15	
	Radiation Laws	9	1.5	
IV	Measurement of Radiation	6	15	

Possmel 28/06/2018

Rt fa (1)

(例)、の) Physics 登 Electionie Charativa Vidya Bhavan e Vivekananda Colloga minikpuri: SacundaraDed-500 電影

<u>Semester III</u> PAPER 323-- THERMODYNAMICS

Month-wise organizer for the academic year 2018-2019

Month	No. of classes scheduled	Topic proposed to be covered	classes required	Remarks
		Thermodynamic Laws-Introduction to thermodynamics and First Law	7	
June	9	Second law of thermodynamics	2	
		Second Law of thermodynamics and Applications	4	
July	14+1	Thermodynamic potentials and Maxwell's equations- Applications	7	
		Low temperature physics-Methods of production	4	
		Low temperature physics- Refrigeration	2	
August	12+2	Kinetic theory of gases –Introduction, Ideal and Vander wall's gases, transport phenomena	6	
		Statistical Mechanics- Classical statistics	6	
		Quantum Statistics	2	
September	12+2	Radiation Laws- Blackbody Radiation: Classical and Quantum theory	8	
		Measurement of Radiation	4	
October	2	Solar constant and Estimation of temperature of Sun	2	

Porries 2006/2018

et a fuel

ev. el Physics & Electrezia Sharatiya Vidya Bhavan a Vivekananda Colloge -istzpuri Secundaratiad-508

BHAVAN'S VIVEKANANDA COLLEGE OF SCIENCE, HUMANITIES AND COMMERCE , SAINIKPURI, SECUNDERABAD Autonomous College ACADEMIC ORGANIZER - 2018-2019 DEPARTMENT OF PHYSICS

<u>SEMESTER V – Paper Code PH523</u> <u>ELECTRICITY AND MAGNETISM</u> Unit-wise Lesson Plan for the academic year 2018-2019

Unit	Торіс	Classes stipulated	Remarks
Ι	Electrostatics	10	
II	Dielectrics, Capacitance	10	
	Magnetostatics	10	
III	Moving charge in EM fields		
IV	Electromagnetic Induction		
	Maxwell's equations & EM waves	15	
			Santos

<u>SEMESTER V – Paper Code PH523A</u> <u>Solid State Physics and Spectroscopy</u> Unit-wise Lesson Plan for the academic year 2018-2019

Unit	Торіс	Classes stipulated	Remarks
I	Bonding in crystals Crystal Physics and diffraction	10	
II	Magnetism, Superconductivity Nanomaterials	15	
III	Atomic Spectra One electron spectra	10	
IV	Molecular Spectra Raman Spectra	10	

Provinició 26/06/2018

ev. of Physics & Electréale Bharatiya Vidya Bhavan s Vivekananda Colloge Matteori. Secunderabed-509 686

BHAVAN'S VIVEKANANDA COLLEGE OF SCIENCE, HUMANITIES AND COMMERCE

, SAINIKPURI, SECUNDERABAD Autonomous College

ACADEMIC ORGANIZER - 2018-2019

DEPARTMENT OF PHYSICS

Month-wise organizer for the academic year 2018-2019

Paper Code PH523

Month No. of cla schedule		Topic proposed to be covered	classes required	Remarks
		Electrostatics-Electric field and potential,		
June	6	relation between them Gauss law	6	
		Applications of Gauss law	2	
July	12	Dielectrics-Atomic view of dielectrics,		
		Polarization and charge density, Relation	4	
		between D,E, and P. Gauss law in		
		dielectrics. Relation between dielectric		
		constant and susceptibility.		
		Capacitors-Capacitance of parallel plate		
		condenser with and without dielectric,	4	
1		spherical and cylindrical capacitors,		
		Electric energy stored in a condenser		
		force between plates-condenser		
× .		Magnetostatics : Magnetic induction (B)	2	
		and field (H) permeability and		
		susceptibility		
		Hysteresis loop -magnetic constants	2	
August	10	Moving charge in EM fields	8	
		Hall effect, cyclotron, synchrocyclotron		
		and synchrotron Biot -Savart's law		
		B- straight long wire, circular current loop		
		and solenoid.		
		EMI-Faraday's law -Lenz's law Betatron		
September	12	Ballistic galvanometer -Self and Mutual	8	
		inductance, Solenoid, toroid, energy in		
		magnetic field, Transformer		
		Maxwell's equations : Maxwell's eqs-	4	
		Integral & differential form Maxwell's		
3		wave equation		
October	3	Production of EM waves (Hertz	3	
		experiment) plane EM waves		

Santoshi Mrs T SAI SANTOSHI

Pormice sclog pois

opt. of Physics & Electionia Sheratiya Vidya Bhavan's Vivekananda Collage etmikputi. Secundera0ed-569 €#€€

43

BHAVAN'S VIVEKANANDA COLLEGE OF SCIENCE, HUMANITIES AND COMMERCE , SAINIKPURI, SECUNDERABAD

Autonomous College

ACADEMIC ORGANIZER - 2018-2019

DEPARTMENT OF PHYSICS

Paper Code PH523A

Month-wise organizer for the academic year 2018-2019

Month	No. of classes scheduled	Topic proposed to be covered	classes required	Remarks
		Crystal Physics and diffraction Amorphous		
June	6	and Crystalline nature of matter, Crystal	6	
		systems, Bravais lattices. Miller indices.		
		Simple crystal structures, Types of bonding in		
		crystals, Lattice energy, Medelung's Constant,		
		Born's repulsive coefficient and exponent.	2	
July	12	Born – Haber cycle. Diffraction of X-rays by	-	
	12	crystals-Bragg's law, Laue's and powder	2	
		diffraction method	2	
		Magnetism (5) Magnetic properties of		
		materials-Langevin's theory-Quantum theory-	4	
		Weiss' theory, Molecular field and exchange		
		interactions. Magnetic domains,		
8		Antiferromagnetism.Ferrites -applications.		
		Superconductivity Meissner effect. Type-I		
		and Type-II superconductors. BCS theory:	4	
		Cooper pairs and Phonons. Quantum Hall		
		Effect, High T _c superconductors. Applications		
August	10	Nanomaterials- semi conductor nano particles,		
August	10	metal - carbon nanoparticle. Carbon	4	
		nanoclusters and nanotubes. Quantum nano		<i>x</i>
		structures: nano dot, nanowire and quantum	a ²¹	
		well. Size, dimensionality effect. Fabrication of		
		quantum nanostructures. STM and AFM		
		Atomic Spectra Atoms in Electric, Magnetic	6	
		fields: angular momentum, space quantization.	2	
		Stern Gerlach experiment. Vector atom model,		
	8	quantum numbers associated with LS-JJ		
		coupling schemes. Larmor's theorem - spin		
		magnetic moment. Spectral terms and notations		2
		One electron spectra Alkali Spectra, doublet		21 E
eptember	12	fine structure. Zeeman Effect, Paschen-Back	5	
		Effect and Stark Effect.	5	
	•	Molecular Spectra Types of molecular		
	ŝ.	spectra, pure rotational energies and spectrum		
		determination of inter nuclear distance.	7	
		Vibrational energies - spectrum of diatomic		
		molecule. fluorescence phosphorescence.		
October ·	3	Raman Spectra Raman Effect: Classical and		Tystos B Ele
Jelobel .	5	quantum theory of Raman Effect. Raman's	Sharativ	a Vidya Bha
				ananda Coli
		Spectrometer, Applications of Raman Effect.		acunderabe
	43		43	In
Ars Lal	kshmi Savita	Kelut		VIII
		Propried DrGS	UDVOI	HOUDAR

Bhavan's Vivekananda College

of Science, Humanities and Commerce

Autonomous - Affiliated to Osmania University

2018-19

Program: B Sc MECS

Course Title: Semiconductor Devices

Name of the faculty:	Department:	Year/Semester:	No. of classes per week: 4
Mrs B Niraimathi	Physics and Electronics	I Year/2 nd Semester	Credits: 4

Learning objectives: Understand the working and operation of semiconductor devices, their applications in Rectifiers, power supplies and amplifiers and in turn understand the capabilities and limitations of these devices.

S.No.	Month & Week	Units	Syllabus	Additional Input/value addition	Teaching method	Student/learning activity
1	November 3 rd week	I	Review of basics of semiconductor Physics		Chalk & Board Video on effect of temperature on conductivity of semiconductor	
2	November 4 th week	I	Continuity equation PN Junction theory, VI Characteristics. Diode equation		Chalk & Board	 Problems on diode Study of V1 Characteristics of diode during lab session
3	December 1 st week	•1	Junction capacitance, Varactor diode, Characteristics		Chalk & Board	
4	December 2 nd week	Ι	Zener diode-V1 Characteristics- Application Tunnel Diode- characteristics		Chalk & Board Video of working of tunnel diode	 Problem solving or zener voltage regulator Study of V1 Characteristics of zener diode during lab session
5	December 3 rd week	II	PNP, NPN Transistors, Current components- Configurations	Assignment on applications on diodes- PN Junction, Zener, Varactor & Tunnel diodes	Chalk & Board	
6	December 4 th week	П	Static characteristics in CB, CE & CC Configurations		Chalk & Board	 Study of VI Characteristics of transistor in CE during lab session
7	January I st week	II	Transistor as an amplifier. Transistor as two port network, h parameters, Determination of h parameters		Chalk & Board	• Determination of h parameters during lab session
8	January 2 nd week	II	Load line analysis, Transistor biasing fixed and self bias		Chalk & Board	

9	January 3 rd week	III	FET-Classification Construction and characteristics		Chalk & Board	 Study of VI Characteristics of FET & determination of FET parameters during lab session
10	January 4 th week	III	FET parameters – applications MOSFET-Modes of operation, Applications		Chalk & Board	
11	February 1 st week	III	UJT-Construction, characteristics, application as relaxation oscillator		Chalk & Board	Study of VI Characteristics of UJT & UJT relaxation oscillator during lab session
12	February 2 nd week	IV	Construction and characteristics of SCR, Two transistor analogy, applications		Chalk & Board	
13	February 3 rd week	IV	Construction and characteristics of photo electronics devices- LDR, LED, Photodiode, phototransistor. Solar cell		Chalk & Board	Study of solar cell characteristics during lab session
14	February 4 th week	IV	Revision	 Assignment evaluation by Seminar presentation 	PPT- Presentation	
15	March 1 st week	IV	Revision	 Assignment evaluation by Seminar presentation 	PPT- Presentation	

Boomilly 24(1) 2018 Signature of the Faculty

Poori tés Signature of the HOD

et of Physics & Elections Sharativa Vidya Bhavan's Vivekananda Colloga sjelkpuri SecundaraDed-50% @24

🏵 Bhavan

Bhavan's Vivekananda College

of Science, Humanities and Commerce Autonomous – Affiliated to Osmania University

Program: B Sc MECS

Course Title: Semiconductor Devices

Course Code: EL 224

Academic Year 2018-19

Name of the faculty: Mrs P Lavanya	Department: Physics and Electronics	Year/Semester: I Year/2 nd Semester	No. of classes per week: 4 Credits: 4					
Mrs P Lavanya Physics and Electronics I Year/2 nd Semester Credits: 4 Learning objectives: Understand the working and operation of semiconductor devices, their applications in Rectifiers, power supplies and amplifiers and in turn								
understand the capabilities and limit	itations of these devices.							

S.No.	Month & Week	Units	Syllabus	Additional Input/ value addition	Teaching method	Student/learning activity	Review	Sign	Hod sign
1	November 3 rd week	1	Review of basics of semiconductor Physics		Chalk & Board				
2	November 4 th week	I	Continuity equation PN Junction theory, VI Characteristics, Diode equation		Chalk & Board	 Problems on diodes Study of VI Characteristics of diode during lab session 	completed	toward.	
3	December 1 st week	I	Junction capacitance, Varactor diode, Characteristics		Chalk & Board)		•
4	December 2 nd week	I	Zener diode-VI Characteristics-Application Tunnel Diode- characteristics		Chalk & Board	 Problem solving on zener voltage regulator Study of VI Characteristics of zener diode during lab sessions 	Torangistos configuration Es current	Lavaner	
5	December 3 rd week	II	PNP, NPN Transistors, Current components- Configurations	Assignment on diodes-PN Junction, Zener, Varactor & Tunnel diodes	Chalk & Board		Torangistos Configuration Execution Ecomponents Ecomponents Encomplete Willtake ent hoursto con	rlit	
6	December 4 th week	II	Static characteristics in CB, CE & CC Configurations		Chalk & Board	 Study of VI Characteristics of transistor in CE during lab sessions 	}	V	
7	January 1 st week	II	Transistor as an amplifier, Transistor as two port network, h parameters, Determination of h parameters		Chalk & Board	• Determination of h parameters during lab sessions			

S.No.	Month & Week	Units	Syllabus	Additiona/ Input/ value addition	Teaching method	Student/learning activity	Review	Sign	Hod sign
. 8	January 2 nd week	II	Load line analysis		Chalk & Board) FET Encom-	Javarpo.	
9	January 3 rd week	III	Transistor biasing fixed and self bias		Chalk & Board		/ platt		
10	January 4 th week	III	FET-Classification Construction and characteristics		Chalk & Board	Study of VI Characteristics of FET & determination of FET parameters during lab sessions	(conschedule Enterens to complete		
11	February 1 st week	ш	FET parameters – applications MOSFET-Modes of operation, Applications		Chalk & Board)		
12	February 2 nd week	IV	UJT-Construction, characteristics, application as relaxation oscillator		Chalk & Board	Study of VI Characteristics of UJT & UJT relaxation oscillator during lab sessions	covered	Jonarel	
13	February 3 rd week	IV	Construction and characteristics of SCR, Two transistor analogy, applications	 Assignment on FET and UJT characteristics & applications 	Chalk & Board s				
14	February 4 th week	IV	Construction and characteristics of photo electronics devices-LDR, LED, Photodiode, phototransistor, Solar cell			S			,
15	March 1 st week	IV	Revision				Covered	dewaren.	
Learni	ng outcomes:	Students	should be able to work with o	lifferent types of se	emiconductor devices, u	nderstand their characteristics a	and applications.		

C

Lowcreh' Signature of the Faculty

Bharatiya Vidya Bhavan's Vivekananda College Heikpuri Secunderabed-509 654

1 181 Signature of the HOD

Bhavan's Vivekananda College

of Science, Humanities and Commerce

Autonomous - Affiliated to Osmania University

Teaching plan: 2018-19

B Sc II Year Electronics – Operational Amplifiers and Analog communications

Name of the faculty:	Department:	Year/Semester:	No. of classes per week:
TVLNH PRASAD	ELECTRONICS	IV	4

Learning objectives:

• To provide the basic education in linear integrated circuits; operational amplifiers - basic construction, characteristics, parameter limitations and its applications.

• To give basic knowledge of analog communications

• Become proficient with computer simulation skills (using Pspice) for the analysis and design of circuits.

• The students will be made to understand the working of operational amplifier ICs and its applications.

S.No	Month & Week	Unit	Syllabus	Additional Input/ value addition	Teaching method	Student/learning activity		
1	November 4 th week	I	Operational amplifiers – block diagram, equivalent circuit	Drawbacks of an amplifiers using discrete components	Charlk & Board	Student seminars on biasing & RC Coupled amplifier.	Covered J.	
2	5 th week 3	I	Op – amps – Ideal & Practical characteristics	Types of op amps	Charlk & Board		Covern In	
3	December 1 st week	I	Differential Amplifier	Emitter follower	Charlk & Board		connert	
4	2 nd week 4	Ι	Op – amp as Inverting & Non – Inverting amplifiers	Construction & demonstration of amplifier circuits	Charlk & Board	Numerical problems in Amplifiers – inverting and non – inverting	Covered done J	
5	3 rd week 3	II	Op – amp Applications		Chalk & Board Lab demonstrations	Construction and simulation of amplifier circuits	cours f	
6	4 th week	II	Op – amp Applications	Comparison of circuits with transistors	Chalk & Board Lab demonstrations	Numerical problems on summing, differentiator and integrator	covered T	

S.No	Month & Week	Unit	Syllabus	Additional Input/ value addition	Teaching method	Student/learning activity	
7	January 1 st week	II	Waveform generators – since	Comparison of circuits with transistors	Chalk & Board Lab demonstrations	Simulation of the circuits	carerest
8	2 nd week	III	Square, triangular		Chalk & Board Lab demonstrations	Simulation of the circuits AMV	cours 1
9	3 rd week	III	Amplitude Modulation	Demonstration of AM modulation and detection	Chalk & Board Lab demonstrations	List the transmission frequencies of AM and FM	covers y
10	4 th week	III	Demodulation		Chalk & Board Lab demonstrations	Construct modulator and demodulator & simulate	Covered Jain
11	February 1 st week	III	Frequency Modulation	Demonstration of FM modulation and detection using trainer boards	Chalk & Board Lab demonstrations		1~
12	2 nd week	IV	FM Detection				2~
13	3 rd week	IV	AM and FM transmitter and receivers	Demonstrate various blocks of a receiver in a radio	Chalk & Board LCD presentations	Assignments	7~
14	4 th week	IV	Pulse modulation	Applications will be discussed	Chalk & Board LCD presentations	Student seminars	cennof
15	March 1 st week		Revision				Janu're

Learning outcomes:

After the completion of this course students acquire experience in building and troubleshooting simple analog circuits using IC - 741 and IC - 555 in various applications.

After the completion of this course the students will become familiar with fundamental concepts of analog communications, working of transmitter and receiver.

Signature of the Faculty

Spi, of Physics & Electronia Bharatiya Vidya Bhavan a Vivekananda College simikpuri, Secunderabed-509

Porrill

Signature of the HOD

BHAVAN'S VIVEKANANDA COL EGE OF SCIENCE, HUMANITIES AND COMMERCE Sainikpuri, Secunderabad-500094 Autonomous College Affiliated to Osmania University TEACHING PLAN: 2018-19 Program: B. Sc (M/E/Cs) Course Title: <u>EL 424 : OPERATIONAL AMPLIFIERS AND ANALOG COMMUNICATIONS</u>

Name o faculty:		Departr Physics	nent: and Electronics	Year/Sen IIyi	nester: r / IV		No. of Classes per week (4 hrs/week) 4 Credits	:	
	Prasanna	Learni The cou	ng Objective: Irse aims to – provide the basic characteristics, pa Become proficien	education i rameter lin t with com	n linear integrated cir nitations and its applic puter simulation skill	cations. s for the analysis and c	lifiers – basic constructio		
S. No	Month & Week	Units	Syllabu	s	Additional Input/Value addition	Teaching Method	Student/ Learning activity	Review	Sign
1.	November 4 th week	Ι	Operational Amp block diagram, e circuit		Drawbacks of an Amplifier using discrete components	Chalk & Board, LCD presentation	Student seminars on biasing & RC coupled amplifier.	D	
2.	November 5 th week	I	Operational am ideal characte practical para	ristics,	Types of OpAmp packages	Chalk & Board, presentation		À	
3.	December 1 st week	I	Differential A	mplifier	Emitter follower	Chalk & Board		È	
4.	December 2 nd week	I	Op Amp as inve non-inverting A		Construction & demonstration of amplifier circuits	Chalk & Board	Numerical problems in Amplifiers – inverting, Non inverting	A	
5.	December 3 rd week	II	Op Amp appl	ications		Chalk & Board	Construction and simulation of amplifier circuits	A	
6.	December 4 th week	II	Op Amp appl	ications	Comparison with circuits using	Chalk & Board	Numerical problems on Summing,	\checkmark	

			(transistor	(Integrator and differentiator circuits	
7.	January 1 st week	II	Waveform generators	Comparison with circuits using transistor	Chalk & Board	Simulation of WBO circuit	2
8.	January 2 nd week.	III	Square, triangular waveform generators		Chalk & Board	Simulation of the circuits AMV	E
9.	January 3 rd week	III	Amplitude Modulation		Chalk & Board	List the transmission frequencies of AM and FM	8
10.	January 4 th week	III	Demodulation	Demonstrate AM modulation and detection	Chalk & Board	Simulate modulator and demodulator ckts	A
11.	February 1 st week	IV	Frequency Modulation		Chalk & Board		k
12.	February 2 nd week	IV	FM detection		Chalk & Board		b
13.	February 3 rd week	IV	AM and FM transmitter and receivers		Chalk & Board	Assignments	A
14.	February 4 th week	IV	Pulse modulation	Applications will be discussed.	Chalk & Board	Student seminars	Å,
15.	March 1 st week	IV	Revision				

IC741/747 and IC 555 in various applications.

After learning the course, students will be familiar with the fundamental concepts of analog communication, working of transmitter and receiver.

19 Signature of the Faculty

Bharativa Vidya Shavan e Vivekananda College etalapuri, Secunderabad-562 684

Poss

Signature of the HOD

Bhavan

Bhavan's Vivekananda College

C

of Science, Humanities and Commerce

Autonomous - Affiliated to Osmania University

Program – B Sc III Year Electronics Course – 8051 Microcontroller

2018 - 19

Name of the faculty: TVLNH PRASAD	Department: ELECTRONICS	Year/Semester: III year / VI	No. of classes per week: - 3 / credits 3				
Learning objectives:							
To understand the need of microcontrollers in	embedded systems						
To understand architecture and featuers of typi	cal microcontroller						
The 8051 architecture, instruction set, assembly language program, serial communication and interfacing techniques of 8051 microcontroller							
Programming and debugging skills							

S.No.	Month & Week	Units	Syllabus	Additional Input/ value addition	Teaching method	Student/learning activity		
1	November 3 rd week	γ^{1}	Introduction to microcontroller and embedded systems, overview of 8051 family	Students will be introduced to microcontroller kits in lab	LCD projector is used to cover these fundamentals Chalk & Board		completed.	J~
2	4 th week	1	Block diagram of microcontroller, 8051 functions of each block		LCD projector Chalk & Board	Students will explain the details of selected part of block diagram	Completed	J~~
3	December 1 st week	1 V	Pin details of 8051 ALU, ROM, RAM memory organization of 8051, oscillator clock and SFRs		LCD projector Chalk & Board	Students will come with block diagram and pin diagram , list of SFRs	covered	J
4	2 nd week	4	Program counter, PSW register, stack, i/o ports, serial port, timer, interrupts		Chalk & Board	Setting and resetting the bits of psw, register bank selection examples	covered	J~
5	3 rd week	2	Addressing modes of 8051, instruction set of 8051, classification of instructions	Simulation software is introduced	Chalk & Board	Examples are given to identify the types of addressing modes and instructions	covered	Z
6	4 th week	2	Data transfer , arithmetic and branching instructions programming		Chalk & Board Flow charts are drawn on board to explain the logics of the programs	Example programs	cours	Ţ

							O wing
15	March 1 st week	4	Revision				4-
					Chalk & Board		Conglin
14	4 th week	4	Serial communication stepper motor interfacing		LCD projector	Demos and video lectures	1~
,					Chalk & Board Keil software		
13	3 rd week	4	Waveform generation, interfacing LCD and display information		LCD projector	Demos and video lectures	1~
				712 05 dui ing 100 505510115	Keil software		
12	2 nd week	4	Interfacing ADC , DAC	Micro controller project Kits will be used to demonstrate the working of DAC and ADCs during lab sessions	Chalk & Board	Students will identify various Applications using DAC and ADCs	·1~
11	February 1 st week	3	BCD , HEX and ASCII code conversions, subroutines	Programming will be practiced by students during lab sessions	LCD projector Chalk & Board	Example programs	armin Jdore.
10	4 th week	3	Largest / smallest numbers ascending / descending order	Programming will be practiced by students during lab sessions	Chalk & Board	Example programs	Cours Jun
9	3 rd week	3	Addition subtraction multiplication and division Time delay programming	Programming will be practiced by students during lab sessions	Chalk & Board	Example programs	corres J.
8	. 2 nd week	2	Programming using Logical instructions		Chalk & Board Flow charts are drawn on board to explain the logics of the programs	Example programs	covered In
7	January 1 st week	2	Bit manipulation instructions and simple programs using these instructions		Chalk & Board Flow charts are drawn on board to explain the logics of the programs	Example programs	cover 2/2

Learning outcomes:

Define terms applicable to microcontrollers

Write programs using assembly language

Work with microcontroller based equipment and be capable of participating in product development efforts, including support and development of assembly language code

Signature of the Faculty

Vivekananda Cancolog Vivekananda Cancolog Vivekananda Cancologija (Secunderação - 508 Vivekananda Cancologija)

Boonick

Signature of the HOD

Bhavan's Vivekananda College of Science, Humanities and Commerce Autonomous – Affiliated to Osmania University Program – B Sc III Year Electronics Course – 8051 Microcontroller EL624 2018 - 19

Name of the faculty: MrS M PRASANNA	Department: ELECTRONICS	Year/Semester: III year / VI	No. of classes per week: 3 / credits 3				
Learning objectives:							
To understand the need of microcontrollers in a	embedded systems						
To understand architecture and featuers of typi	cal microcontroller						
The 8051 architecture, instruction set, assembly language program, serial communication and interfacing techniques of 8051 microcontroller							
Description and debugging skills							

Programming and debugging skills

S.No.	Month & Week	Units	Syllabus	Additional Input/ value addition	Teaching method	Student/learning activity			
1	November 3 rd week	1	Introduction to microcontroller and embedded systems, overview of 8051 family	Students will be introduced to microcontroller kits in lab	LCD projector is used to cover these fundamentals Chalk & Board				
2	4 th week	1	Block diagram of microcontroller, 8051 functions of each block		LCD projector Chalk & Board	Students will explain the details of selected part of block diagram	$\Big)$		0
3	December 1 st week	1	Pin details of 8051 ALU, ROM, RAM memory organization of 8051, oscillator clock and SFRs		LCD projector Chalk & Board	Students will come with block diagram and pin diagram , list of SFRs		Complet &	r.d
4	2 nd week	1	Program counter, PSW register, stack, i/o ports, serial port, timer, interrupts		Chalk & Board	Setting and resetting the bits of psw, register bank selection examples			
5	3 rd week	2	Addressing modes of 8051, instruction set of 8051, classification of instructions	Simulation software is introduced	Chalk & Board	Examples are given to identify the types of addressing modes and instructions			
6	4 th week	2	Data transfer , arithmetic and branching instructions programming		Chalk & Board Flow charts are drawn on board to explain the logics of the programs	Example programs			

				C		C		
7	January 1 st week	2	Bit manipulation instructions and simple programs using these instructions		Chalk & Board Flow charts are drawn on board to explain the logics of the programs	Example programs	2	
8	2 nd week	2	Programming using Logical instructions		Chalk & Board Flow charts are drawn on board to explain the logics of the programs	Example programs		
9	3 rd week	3	Addition subtraction multiplication and division Time delay programming	Programming will be practiced by students during lab sessions	Chalk & Board	Example programs	Complete	Q
10	4 th week	3	Largest / smallest numbers ascending / descending order	Programming will be practiced by students during lab sessions	Chalk & Board	Example programs	A	
11	February 1 st week	3	BCD , HEX and ASCII code conversions, subroutines	Programming will be practiced by students during lab sessions	LCD projector Chalk & Board	Example programs		
12	2 nd week	4	Interfacing ADC, DAC	Micro controller project Kits will be used to demonstrate the working of DAC and ADCs during lab sessions	Chalk & Board	Students will identify various Applications using DAC and ADCs		
13	3 rd week	4	Waveform generation, interfacing LCD and display information		Keil software LCD projector Chalk & Board	Demos and video lectures	J	-
14	4 th week	4	Serial communication stepper motor interfacing		Keil software LCD projector Chalk & Board	Demos and video lectures	2	
15	March 1 st week	4	Revision					

Learning outcomes:

Define terms applicable to microcontrollers Write programs using assembly language

Work with microcontroller based equipment and be capable of participating in product development efforts, including support and development of assembly language code

Signature of the Faculty

et, of Physics & Electionic Sharatiya Vidya Shavan s Vivekananda College etalkpuri. Secunderabed-508 @p-

Signature of the HOD

Bhavan's Vivekananda College

of Science, Humanities and Commerce

6

Autonomous - Affiliated to Osmania University

Program: B Sc MECS

Course Title: Digital system design using VHDL

Course Code: EL 624A

Academic Year 2018-19

Name of the faculty:	Department:	Year/Semester:	No. of classes per week: 3						
Mrs P Lavanya	Physics and Electronics	IIIYear/6 th Semester	Credits: 3						
Learning objectives: To learn hardware descriptive language and to write codes targeting Xilinx and FPGA devices.									

S.No.	Month & Week	Units	Syllabus	Additional Input/ value addition	Teaching method	Student/learning activity	Review	Sign	Hod sign
1	November 3 rd Week	I	Introduction to VHDL		Chalk&Board		Completed	fame	c.
2	November 4 th Week	I	Entity and Architecture declaration Data objects and Classes		Chalk&Board	Introduction to Xilinx ISE simulator- A software tool for HDL design and simulation during lab session.			
3	December 1 st Week	I	Operators and data types		LCD	Modeling and simulation of gates during lab session.	Bequenti		e.
4	December 2 nd Week	I	Introduction to behavioral, dataflow& structural model.		Chalk&Board		Eorcurent Stalener Boxomple	11-21	
5	December 3 rd Week	II	Process statement, Assignment statements, sequential statements and case statement.		Chalk&Board	Writing VHDL codes to design adders and subtractors	Will Sche Entre Classes to comp	dule let	
6	December 4 th Week	II	Arrays &loops, concurrent statements		Chalk&Board	Attended Refresher Course frem 19/12/18 to 11/01/19			

S.No.	Month & Week	Units	Syllabus	Additional Input/ value addition	Teaching method	Student/learning activity	Review	Sign	Hod sign
7	January 1 st Week	II	Types of delays Structural modeling, component declaration & generics		Chalk&Board) Few topsis		
8	January 2 nd Week	. II	packages& libraries, Functions and procedures		Chalk&Board	Designing other sequential circuits like mux and demux during lab session	Ioxcomplet Will Extere Clatsesto Completi	i Jouran	9.
9	January 3 rd Week	III	, VHDL models- simulation of mux, demux.decoders and encoders.		Chalk&Board	Structural style modeling of decoders and encoders	clatsesto completi		
10	January 4 th Week	III	VHDL models- Code converters and comparators.		Chalk&Board	Modeling comparator			
11	February 1 st Week	111	VHDL models for Implementation of Boolean functions, sequential circuits- flip-flops- SR and JK.		Chalk&Board)		
12	February 2 nd Week	IV	VHDL models- D and T flip-flops. Registers.		Chalk&Board	Design of flip flops	Covered	forma	neo.
13	February 3 rd Week	IV	VHDL models to design registers.		Chalk&Board				
14	February 4 th Week	IV	VHDL models to design counters- ripple counter and decade counter		Chalk&Board	Modeling sequential circuits like counters and registers.			
15	March 1 st Week		Over view on sequential concurrent statements and component declaration Modeling design at different abstractions	Students will be presenting a PPT – Design of any digital circuit in different models.	LCD		Covered	force	9.,

Jawaree. Signature of the Faculty

ex el Physics & Elecifisale. Sharativa Vidya Shavan's Vivekananda College stalkpurt Secunders0ed-50@ €8-

Porriel

Signature of the HOD

Bhavan's Vivekananda College of Science, Humanities and Commerce Autonomous - Affiliated to Osmania University

Program: BSc MECs

Course Title: Digital System Design using VHDL Academic Year 2018-19

Course Code: EL624A

Name of the faculty: B. Niraimathi	Department: Physics & Electronics	Year/Semester: III Year/VI Semester	No. of classes per week: 3					
Learning objectives: To learn hardware descriptive language and to write codes targeting Xilinx and FPGA devices.								

	S.No.	Month & Week	Units	Syllabus	Additional Input/ value addition	Teaching method	Student/learning activity
	1	November 3 rd Week	Ι	Introduction to VHDL		Chalk & Board	
X	2	November 4 th Week	I	Entity and Architecture declaration Introduction to behavioral, dataflow & structural model.		Chalk & Board	Introduction to Xilinx ISE simulator-A software tool for HDL design and simulation during lab session.
	3	December 1 st Week	Ι	Data objects and Classes		PPT	Modeling and simulation of gates during lab session.
	4	December 2 nd Week	I	data types and Operators		Chalk & Board and PPT	
	5	December 3 rd Week	П	Process statement, Assignment Statements, sequential statements and case statement.		Chalk & Board and PPT	Writing VHDL codes to design adders and subtractors during lab session
	6	December 4 th Week	II	Arrays &loops, concurrent statements		Chalk & Board and PPT	
	7	January 1 st Week	Ш	Types of delays Structural modeling, component declaration & generics		Chalk & Board and PPT	Writing VHDL code for full adder using structural modeling during lab session
	8	January 2 nd Week	Π	Packages & libraries, VHDL models- simulation of Mux, Demux.		Chalk & Board and PPT	Designing other sequential circuits like mux and demux during lab session
	9	January 3 rd Week	III	VHDL models- simulation of decoders, and encoders.		Chalk & Board	Structural style modeling of decoders and encoders
	10	January 4 th Week	111	VHDL models- Code converters and comparators.		Chalk & Board	Modeling comparator

I2 February 2 nd Week 13 February 3 rd Week 14 February 4 th Week 15 March 1 st Week					session
13 3 rd Week February 14 4 th Week March	IV	VHDL models- D and T flip-flops. Registers.		Chalk & Board	
14 4 th Week	IV	VHDL models to design registers.		Chalk & Board	Modeling sequential
1 st Week	IV	VHDL models to design counters- ripple counter and decade counter	2	Chalk & Board	circuits like counters and registers.
- H	Revision	Over view on sequential concurrent statements and component declaration Modeling design at different abstractions	Student seminar by presenting a PPT – Design of any digital circuit in different models.		

Posmile

Signature of the Faculty

Vivekanands College

Booniel Signature of the HOD

Bhavan's Vivekananda College

of Science, Humanities and Commerce

Autonomous - Affiliated to Osmania University

TEACHING PLAN: 2018-19

Program: B.Sc(MPCs) Course Title: WAVES AND OSCILLATIONS (PH223)

Name of the faculty: Mrs T Sai Santoshi	Department: PHYSICS& Electronics	Year/Semester: I/II	No. of classes per week: 4			
Learning objectives: To introduce the students to fundamental concepts of wave mechanics and provide a foundation for						
more advanced topics in waves.						

S.No.	Month & Week	Unit	Syllabus	Additional Input/ value addition	Teachi metho	0	Student/learning activity	Review	Signature	Hods	signature
1	November 3 rd week	I	Simple harmonic oscillator, and solution of the differential equation- Physical characteristics of SHM,		Chalk board	&	Solving exercise problems on SHM	_			
2	November 4 th week	Ι	Torsion pendulum, - measurements of rigidity modulus, compound pendulum, measurement of 'g'.		Chalk board	&	Assignment		-		
3	December 1 st week	I	Addition of two simple harmonic motions with different frequencies and phases, addition of many simple harmonic motions		Chalk board PPT	, &		Completed	Santosh Santoshi	T.	
4	December 2^{nd} week $\overline{I}_A - 5$ $\overline{I}_B - 4$	I	combination of two mutually perpendicular simple harmonic vibrations of same frequency and different frequencies, Lissajous figures.		Chalk board PPT	, &		completed	Santoshi		
5	December 3^{rd} week $I_A - 3$ $I_B - 4$	II	Damped harmonic oscillator, solution of the differential equation of damped oscillator. Energy consideration with under damped harmonic oscillator,	Applications with regards to high and low damping	Chalk board	&	damped motion	completed	Jumen	1	
6	December 4^{th} week $\Box A - 0$ $\exists A - 0$ January	II	Logarithmic decrement, relaxation time, quality factor.		Chalk board	&	Solving exercise problems Assignment	completed completed	soutosh	Pos	mill
7	$\begin{array}{c} \text{January} \\ 1^{\text{st}} \text{ week} \\ T_{A} - 4 \end{array}$	1	Forced oscillations, differential equation of forced oscillator and its solution, amplitude resonance, velocity resonance		Chalk board	&	Solving exercise problems	completed	santoshi		

IB-2.

	$1_{0} - 01$ $1_{0} - 03$		C				C	Review	Signature	HOD'S signalti
8	January 2 nd week	п	Power considerations, quality factor, sharpness and Band width for resonance.		Chalk & board		Solving exercise problems	completed	Sontoshi	
9	January 3 rd week TA-4, TB	III	Fourier theorem and evaluation of the Fourier coefficients, analysis of periodic functions-square,		Chalk board & PPT			completed	Santoshi	<i>.</i> .
10	January 4 th week	III A-3 A-3	triangular, saw-tooth functions. Fourier energy theorem.				Assignment	completed.	Santoshi	proprie
11	February 1 st week $I_A - 2$ $I_B - 2$,	Ultrasonic's, properties of ultrasonic waves, production of ultrasonics by piezoelectric and magnetostriction methods, detection of ultrasonics, determination of wavelength of ultrasonic waves. Velocity of ultrasonics in liquids by Sear's method. Applications of ultrasonic waves.		Chalk board & PPT			Completed	santoshit	
12	February 2^{nd} week IA - 5 IB - 4	IV	Transverse wave propagation along a stretched string, general solution of wave equation and its significance, Expression for velocity		Chalk & board		Solving exercise problems	completed	santoshi	Proprie
13	February 3^{rd} week $I_{A} - 4$ $I_{B} - 1$	IV	Modes of vibration of stretched string clamped at both ends, overtones, energy transport, transverse impedance. Reflection and transmission of waves.	Importance of different modes of vibrations with reference to tuning of musical instruments	Chalk & board	ž		complete	santish	J
14	February 4^{th} week IA - 5 IB - 5	IV	Longitudinal vibrations in bars – wave equation and its general solution. Expression for velocity. Special cases (i) bar fixed at both ends ii) bar fixed at the mid point		Chalk & board	ě	Assignment	completee	Santoshi Santoshi	
15	March IA -3 1 ST week J	IV Bytl	iii) bar free at both ends iv) bar fixed at		Chalk & board	ě		completed	Santoshy	Brenn
Learning outcomes: Having completed this course, student should be capable of applying principles of wave superposition to various fields of physics										

to various fields of physics. -

Soutor

Signature of the Faculty

ev of Physics & Blastfield Anarativa Vidya Bhavanis Vivekenanda Collage velkeuri, Secucioraded-502 cor

Porriel Signature of the HOD

2

PLAN AND REVIEW SHEET FOR CURRICULAR PROGRAMMES FOR THE ACADEMIC YEAR- 2018 - 2019

Bhavan

MPCS TTA

Bhavan's Vivekananda College

of Science, Humanities and Commerce Autonomous – Affiliated to Osmania University

TEACHING PLAN: 2018-19 Program: *B.Sc(MPCs)* Course Title: OPTICS (PH423)

	Name of the faculty:	Department:	Year/Semester:	No. of classes per week: 4				
	Dr. GSVRK CHOUDARY	PHYSICS	II/IV					
1	Learning objectives: This course introduces the formalism of wave behavior in the context of physical entires							

Learning objectives: This course introduces the formalism of wave behavior in the context of physical optics.

Мо

of

D

J

S.No.	Month & Week	Unit	Syllabus	Additional Input/ value addition	Teaching method	Student /learning activity	REVIEW
1	November 3 rd week	I	Introduction to aberrations, Monochromatic aberrations- spherical aberration, methods of minimizing spherical aberration,		Chalk & board		Not Complete
2	November 4 th week 7	I	Chromatic aberration: Achromatic doublet, Minimizing of chromatic aberration by a separated doublet. coma, and astigmatism.		Chalk & board	Solving problems Assignment	Completed
3	December 1 st week	I	Principal of superposition of waves Coherence, temporal and spatial coherence, conditions for Interference of light, Young's double slit experiment, Theory of interference.		Chalk & board PPT		Comleud
4	December 2 nd week	1	Fresnel's Bi-prism: Determination of wave length of light, determination of thickness of a transparent material using Bi- prism. Change of phase on reflection, Lloyd's mirror experiment.		Chalk & board PPT	Solving problems	Not COMPLY
5	December 3 rd week	II	Interference by a film with two non-parallel reflecting surfaces: Wedge shaped film, determination of diameter of wire. Newton's rings in reflected light with and without contact between lens and glass plate, Newton's rings in transmitted light Determination of wave length of monochromatic light.		Chalk & board PPT	Solving problems	Grindlady
6	December 4 th week	II	Michelson's Interferometer: Types of fringes, Determination of wavelength of monochromatic light, Difference in wavelength of sodium $D_1 D_2$ lines and thickness of a thin transparent plate, refractive index and visibility of fringes	Application of interference	Chalk & board PPT	Solving problems Assignment	Not Compete
7	January 1 st week	-	Introduction: Distinction between Fresnel and Fraunhoffer diffraction. Fraunhoffer diffraction: Diffraction due to single slit and circular aperture, Limit of resolution.		Chalk & board PPT		Not-Complet
8	January 2 nd week	III	Fraunhoffer diffraction due to double slit,Fraunhoffer diffraction pattern with N slits (diffraction grating). Resolving Power of grating-derivation.		Chalk & board PPT		Complete

PLAN AND REVIEW SHEET FOR CURRICULAR PROGRAMMES FOR THE ACADEMIC YEAR- 2018 - 2019

9	January 3 rd week 3	III	Determination of wave length of light in normal and oblique incidence methods by using diffraction grating.		Chalk & board PPT	Solving problems	Not Complet
10	January 4 th week	III	Fresnel diffraction: Fresnel's half period zones, area of the half period zones. zone plate – Comparison of zone plate with convex lens, Phase reversal zone plate. Diffraction at a straight edge. Distinction between interference and diffraction.	Applications of diffraction with regards to measurement of crystallite size	Chalk & board PPT	Assignment	Not Couplet
11	February 1 st week	IV	Polarized light : Methods of Polarization, Polarization by reflection, refraction, Double refraction, selective absorption.		Chalk & board PPT		Completie
12	February 2 nd week	IV	Scattering of light, Brewster's law, Malus law, Nicol prism: polarizer, analyzer.Refraction of plane wave incident on negative and positive crystals- Huygen's explanation.		Chalk & board PPT		Complets
13	February 3 rd week	IV	Quarter wave plate and half wave plate. Babinet's compensator: Optical activity. Laurent's half shade polarimeter: Analysis of light.	Importance of polarization with specific examples	Chalk & board PPT	Solving problems	Completi
14	February 4 th week	IV	Lasers: Introduction: Spontaneous emission and Stimulated emission. Population inversion. Principle of Laser – Einstein coefficients. Types of Lasers: He-Ne laser, Ruby laser and Solid state laser.		Chalk & board	Assignment	Complete
15	March ^{1 ST} week	IV	Pumping methods, Applications of lasers.		Chalk & board		Complete

Learning outcomes: 1.8

Having completed this course, student should acquire knowledge of, interference, diffraction and polarisation effects

Signature of the Faculty

Signature of the HOD

6.23

or of Physics 谷 Elseifâale. Sharstiya Vidya Bhavan's Vivekanande College nalkpuri Secunderabed-50@ @Se

PLAN AND REVIEW SHEET FOR CURRICULAR PROGRAMMES FOR THE ACADEMIC YEAR- 2018 - 2019 Bharatha Maya MPG - IB

Bhavan's Vivekananda College

of Science, Humanities and Commerce

Autonomous - Affiliated to Osmania University

of te

Mont

D

TEACHING PLAN: 2018-19

Program: B.Sc(MPCs) Course Title: OPTICS (PH423)

Name of the faculty:	Department:	Year/Semester:	No. of classes per week: 4					
Dr. GSVRK CHOUDARY	PHYSICS	II/IV						

Learning objectives: This course introduces the formalism of wave behavior in the context of physical optics.

S.No.	Month & Week	Unit	Syllabus	Additional Input/ value addition	Teaching method	Student /learning activity	REVIEW
1	November 3 rd week	I	Introduction to aberrations, Monochromatic aberrations- spherical aberration, methods of minimizing spherical aberration,		Chalk & board		Viot Constal Vipi
2	November 4 th week	I	Chromatic aberration: Achromatic doublet, Minimizing of chromatic aberration by a separated doublet. coma, and astigmatism.		Chalk & board	Solving problems Assignment	Completed
3	December 1 st week	I	Principal of superposition of waves Coherence, temporal and spatial coherence, conditions for Interference of light, Young's double slit experiment, Theory of interference.		Chalk & board PPT		Notcomplete
4	December 2 nd week	I	Fresnel's Bi-prism: Determination of wave length of light, determination of thickness of a transparent material using Bi- prism. Change of phase on reflection, Lloyd's mirror experiment.		Chalk & board PPT	Solving problems	Not Granleta
5	December 3 rd week	II	Interference by a film with two non-parallel reflecting surfaces: Wedge shaped film, determination of diameter of wire. Newton's rings in reflected light with and without contact between lens and glass plate, Newton's rings in transmitted light Determination of wave length of monochromatic light.		Chalk & board PPT	Solving problems	Completiel
6	December 4 th week 3	II	Michelson's Interferometer: Types of fringes, Determination of wavelength of monochromatic light, Difference in wavelength of sodium D_1 D_2 lines and thickness of a thin transparent plate, refractive index and visibility of fringes		Chalk & board PPT	Solving problems Assignment	Not Completed
7	January 1 st week	- III	Introduction: Distinction between Fresnel and Fraunhoffer diffraction. Fraunhoffer diffraction: Diffraction due to single slit and circular aperture, Limit of resolution.	с. К	Chalk & board PPT		Completed
8	January 2 nd week	III	Fraunhoffer diffraction due to double slit,Fraunhoffer diffraction pattern with N slits (diffraction grating). Resolving Power of grating-derivation.		Chalk & board PPT		Not Completed

PLAN AND REVIEW SHEET FOR CURRICULAR PROGRAMMES FOR THE ACADEMIC YEAR- 2018 - 20(γ

9	January 3 rd week	III	Determination of wave length of light in normal and oblique incidence methods by using diffraction grating.		Chalk & board PPT	Solving problems	Wot complety
10	January 4 th week	III	Fresnel diffraction: Fresnel's half period zones, area of the half period zones. zone plate – Comparison of zone plate with convex lens, Phase reversal zone plate. Diffraction at a straight edge. Distinction between interference and diffraction.	Applications of diffraction with regards to measurement of crystallite size	Chalk & board PPT	Assignment	Completed
11	February 1 st week	IV	Polarized light : Methods of Polarization, Polarization by reflection, refraction, Double refraction, selective absorption.		Chalk & board PPT		(3mpkh
12	February 2 nd week	IV	Scattering of light, Brewster's law, Malus law, Nicol prism: polarizer, analyzer.Refraction of plane wave incident on negative and positive crystals- Huygen's explanation.		Chalk & board PPT		Complet
13	February 3 rd week	IV	Quarter wave plate and half wave plate. Babinet's compensator: Optical activity. Laurent's half shade polarimeter: Analysis of light.	Importance of polarization with specific examples	Chalk & board PPT	Solving problems	Compilen Lia
14	February 4 th week	IV	Lasers: Introduction: Spontaneous emission and Stimulated emission. Population inversion. Principle of Laser – Einstein coefficients. Types of Lasers: He-Ne laser, Ruby laser and Solid state laser.		Chalk & board	Assignment	Complety 12
15	March 1 ST week	. IV	Pumping methods, Applications of lasers.		Chalk & board		Completed

 Learning outcomes:

 Having completed this course, student should acquire knowledge of, interference, diffraction and polarisation effects

Signature of the Faculty

10000 Signature of the HOD

ev of Physics & Electrante Sharatiya Vidya Bhavan'a Vivekananda College -imikpuri. SecunderaDed-50億 個品。

			с			\mathcal{C}		
	D.,		Au B. Sc. M.P.Cs III yr کے	Bhavan's Vivekar of Science, Humanitie autonomous – Affiliated t Academic	ies and Commerce to Osmania Univ	versity -19		
		emester: N				Course Title : Mo Paper C	Code: PH 623	
	of the faculty: RManjula		Department: Physics	Year/Semester:	III yr VI sem	No. of classes per weel		3
	0 0		rse is a prerequisite to any through this course	/ advanced theoretical studie	s. The student is int	troduced to the fundamental aspe	pects of Quantum	a
S.No.	Month & Week	Units	Syllabus	Additional Input/value addition	Teaching method	Student/learning activity	Review	Hod's Review
1	November week: III (1)	Ι	Spectral Radiation		Chalk & board,	Group discussion on the Spectral distribution of Black body radiation and reasons for inadequacy:of classical Physics	failures of Classical physics to be done mentived	ç .
2	November week: IV (4).	I	Photoelectric Effect and Compton Effect	Experimental Demonstration	Chalk & board, PPT	Evaluate the time taken by the electron to get ejected from the metallic surface from the instance when the radiation strikes the metal by making classical considerations	Compton Shift Derivation to be done Next week	Possi

S.No.	Month & Week	Units	Syllabus	Additional Input/ value addition	Teaching method	Student/learning activity	Review	Hod's Review
3	December week: I (2-)	I	Verification of Compton Effect and deBroglie hypothesis	Compton Effect as a mechanical analogue of Raman Effect. Comparison with Rayleigh scattering	Chalk & board	Solving problems on Einstein's equation and Compton Shift	Complete of extractionstructure Jebroghie theory to be Some next be herek	F
4	December week: II	I	Matter waves	Ehrenfest"s theorem	Chalk & board	Solving problems on de-Broglie theory	Completed	Portines
5	December week: III	П	Uncertainity Principle	Mathematical proof of Uncertainity principle	Chalk & board	Solving problems on Uncertainity Principle	Prosts not given Completedy	S
6	December week: IV	II ,	Schrodinger Equations		Chalk & board		Gonfleled.	Possilie
7	January week I	п	Wave mechanics	Examples of orthogonal and orthonormal functions, Hermitian operator, Parity operator and , commuting operators	Chalk & board	Evaluate the position, momentum and energyvalues for various systems theoretically, making quantum considerations	Completed 22	Borid
8	January week II (3)	п	Applications of Schrodinger equation	Discuss α decay and Tunnel diode on the basis of quantum tunneling	Chalk & board	>	Completed x-decay to be discensed next week	Ç
9	January week III	ш	Nuclear Structure	Classification of nuclei (Nuclear Properties)	Chalk & board		Compteke Proposition	Provid

.

1

1	*			ϵ		C		
S.No.	Month & Week	Units	Syllabus	Additional Input/value addition	Teaching method	Student/learning activity	Review	Hod's Review
10	January week IV (4)	ш	Nuclear hoperhes BE Nuclear forces meson theory		Chalk & board		Completed	7
11	January week V	ш	Nuclear models	Experimental evidence for observed nuclear properties	I (hall & hoard	Solving problems based on Binding energy	Costinued Lost Nuclear Models fr	1 mm
12	February Week I (5)	IV	Nuclear Detectors	Radiation dosimeters	РРТ	Perform G.M. counter based experiments using virtual lab: Studying the properties of Radioactive elements and measuring Half Life of Ba 137	Nuclear Detectors to be done later Goonfoleted d-decery fre	
13	February Week II	IV	Nuclear transformations α decay		I Chalk & board	Students seminar on artificial transmutations	Completed p-decay	
14	February Week III	IV	Nuclear transformations β decay	Non conservation of parity in β decay	I Chalk & board	Students seminar on artificial transmutations	Radiation Genters Wing LCD- J2	4
15	February Week IV	IV	Nuclear reactions		chalk & Brovid	₿°	Coorpleted	poson
16	March week I	IV	Revision					

& Mague

pv. 61 Physics & Electrade Sharetiya Vidya Bhaven'e Vivekananda College malkouri Secunderabed-509 684

Bosnied

				0		(
			A	Bhavan's Vivekan of Science, Humanitic utonomous – Affiliated t Academic Ye	ies and Commerc to Osmania Univ	versity		¥)
	Pro)gram: B	B. Sc. M.P.Cs III yr B			Course Title : M	odern Physics	
	Sei	mester: V	VI			Paper C	Code: PH 623	
	f the faculty: RManjula		Department: Physics	Year/Semester:	III yr VI sem	No. of classes per wee	k:	3
			se is a prerequisite to any through this course	v advanced theoretical studie	s. The student is int	troduced to the fundamental asp	ects of Quantur	n
S.No.	Month & Week	Units	Syllabus	Additional Input/ value addition	Teaching method	Student/learning activity	Review	Hod's Review
1	November week: III (3)	I	Spectral Radiation	×	Chalk & board,	Group discussion on the Spectral distribution of Black body radiation and reasons for inadequacy of classical Physics	Completed Excarried out discussion	/
2	November week: IV (4)	I	Photoelectric Effect and Compton Effect	Experimental Demonstration	Chalk & board, PPT	Evaluate the time taken by the electron to get ejected from the metallic surface from the instance when the radiation strikes the metal by making classical considerations	Coorfeleted & demonstration giren B	Poor

No.	Month & Week	Units	Syllabus	Additional Input/value addition	Teaching method	Student/learning activity	Review	Hod's Review
3	December week: I	I	Verification of Compton Effect and deBroglie hypothesis	Compton Effect as a mechanical analogue of Raman Effect. Comparison with Rayleigh scattering	Chalk & board	Solving problems on Einstein's equation and Compton Shift	Completed and more problems to bedome in december	A
4	December week: II (3)	I	Matter waves	Ehrenfest"s theorem	Chalk & board	Solving problems on de-Broglie theory	Completed	
5	December week: III	П	Uncertainity Principle	Mathematical proof of Uncertainity principle	Chalk & board	Solving problems on Uncertainity Principle	Poorf given Only-fortune cy Energy	R2
6	December week: IV	п	Schrodinger Equations		Chalk & board		To be Completed Next week	
7	January week I	11	Wave mechanics	Examples of orthogonal and orthonormal functions, Hermitian operator, Parity operator and , commuting operators	Chalk & board	Evaluate the position, momentum and energyvalues for various systems theoretically, making quantum considerations		2
8	January week II (多)	II	Applications of Schrodinger equation	Discuss α decay and Tunnel diode on the basis of quantum tunneling	Chalk & board		complete P2-	Boonca
9	January week III	III	Nuclear Structure	Classification of nuclei	Chalk & board		Completed	

C

S.No.	Month & Week	Units	Syllabus	Additional Input/value addition	Teaching method	Student/learning activity	Review	Hod's Review	
10	January week IV (ろ)	Ш	Nuclear Bobeshu,BŁ Nuclear forces meson theory		Chalk & board		completed		
11	January week V (0)	ш	Nuclear models	Experimental evidence for observed nuclear properties	Chalk & board	Solving problems based on Binding energy	To be costs much ion the heart back for	Jossan	LBU
12	February Week I (3)	IV	Nuclear Detectors	Radiation dosimeters	PPT	Perform G.M. counter based experiments using virtual lab: Studying the properties of Radioactive elements and measuring Half Life of Ba 137	Models Completed Continued with Nuclear toanetromahn d-decarf -fo	8 Dogue	ĊĹ
13	February Week II	IV	Nuclear transformations α decay		Chalk & board	Students seminar on artificial transmutations	Pauli nutoino theory of B-decay No semindus gin		
14	February Week III	IV	Nuclear transformations β decay	Non conservation of parity in β decay	Chalk & board	Students seminar on artificial transmutations	Radiation Counters down Wring LCD.	4	
15	February Week IV	IV	Nuclear reactions		chalk & Broad.		Completed fo	positive	Ø
16	March week I	IV	Revision						

C

2

(

& fagel

⇒ of Physics & Stechtage inarctiva Vidya Bhavan's Vivekananda College statkpuri Secundersûed-50@ €\$

Bosnick

Bhavan's Vivekananda College of Science, Humanities and Commerce

Autonomous - Affiliated to Osmania University

TEACHING PLAN: 2018-19 Program: B.Sc(MPCs) Course Title : ELECTRONICS (PH623A)

Name of the faculty:	Electronics							
Mrs T Sai Santoshi	Department: PHYSICS	Year/Semester: III/VI	No. of classes per week: 3					
Learning objectives: The objective of this course is to introduce students to the basic components of electronics: diodes,								
transistors, and op amps. It covers the basic operation and some common applications.								

S.No.	Month & Week	Units	Syllabus	Additional Input/ value addition	Teaching method	Student/learning activity	Review	Signature	HoD's Signatur
1	November ^{3rd week}	I	Kirchhoff Laws, Study of growth and decay of current/charge in LR		Chalk & board	Solving exercise problems		Santoshi	
2	November 4 th week DIP - 3 DIP - 3	I	Study of growth and decay of current/charge in CR, LCR circuits, Alternating current relation between current and voltage in pure R, C, L		Chalk & board	Solving exercise problems	completed	Santosh	pocone
3	December 1 st week	I	Alternating current relation between current and voltage in RL, RC, RLC, vector diagrams		Chalk & board			0	
4	December 2 nd week	I & II	Power in ac circuits. LCR Series resonant circuit, Parallel resonant circuit – Q-factor. Formation of energy bands in solids	Importance of resonance in tuning radio and television	Chalk & board	Solving exercise problems	workloc is gu-sche So	duled.	
5	December 3 rd week	II	Classification of solids in terms of energy band diagram, Intrinsic and extrinsic semiconductors, Fermi level, continuity equation,		Chalk & board	Solving exercise problems	Sa	4/12/18	
6	December 4 th week	II	p-n junction diode, Half wave and Full wave rectifiers and filters, ripple factor.		Chalk & board		This paper asigned !	to a new)-
7	January 1 st week	II & IV	Characteristics of Zener diode and its application as voltage regulator Binary number system: Converting Binary to Decimal and vice versa		Chalk & board		asigned i facility Ms from 05	Abiya Sul 12/18	fana

🛞 Bhavan

C

Bhavan's Vivekananda College

of Science, Humanities and Commerce Autonomous – Affiliated to Osmania University

TEACHING PLAN: 2018-19

Program: B.Sc(MPCs) Course Title : ELECTRONICS (PH623A)

Name of the faculty:	Electronico									
Ms Asiya Sultana Ahmed	Department: PHYSICS&	Year/Semester: III/VI	No. of classes per week: 3							
Learning objectives: The objectives	ctive of this course is to intro-	duce students to the basic co	omponents of electronics: diodes,							
transistors, and op amps. It co	transistors, and op-amps. It covers the basic operation and some common applications.									

S.No.	Month & Week	Units	Syllabus	Additional Input/value addition	Teaching method	Student/learning activity	Review	Signature
1	November 3 rd week	I 	Kirchhoff Laws, Study of growth and decay of current/charge in LR		Chalk & board	Solving exercise problems	_	
2	November 4 th week	- I	Study of growth and decay of current/charge in CR, LCR circuits, Alternating current relation between current and voltage in pure R, C, L		Chalk & board	Solving exercise problems		
3	December 1 st week	1 11A-02 11B-03	Alternating current relation between current and voltage in R L, R C, R L C, vector diagrams		Chalk & board		completed	67
4	December 2 nd week	1&11 11A-03 11B-03	anaray hands in solids	Importance of resonance in tuning radio and television	Chalk & board	Solving exercise problems	Completed	(A)
5	December 3 rd week	111A-03 11 11B-03	Classification of solids in terms of energy band diagram, Intrinsic and extrinsic semiconductors, Fermi level, continuity equation,		Chalk & board	Solving exercise problems	Completed	â
6	December 4 th week	111A-02 111 B-01	p-n junction diode, Half wave and Full wave rectifiers and filters, ripple factor.		Chalk & board		Completed	a
7	January 1 st week	11A-03	Characteristics of Zener diode and its application as voltage regulator Binary number system: Converting		Chalk & board		Completed Completed	Ø

1

				Binary to Decimal and vice versa					
ature c		January 2 nd week	IV 11A-03 111B-03	Binary addition and subtraction (1's and 2's complement methods) Hexadecimal number system. Conversion from Binary to Hexadecimal – vice versa and Decimal to Hexadecimal vice versa,		Chalk & board	Solving, conversions	Completed	6)
the Principal		January 3 rd week	IV 111A-02 111B-01	Logic gates: OR, AND, NOT gates, truth tables, realization of these gates using discrete components. NAND, NOR as universal gates, Exclusive – OR gate		PPT	Solving, conversions	Completed	67
	0	January 4 th week	ТV &Ш 1]]А-03 1]]В-03	De Morgan's Laws– Statement and Proof, Half and Full adders. p n p and n p n transistors(Working).		PPT+ Chalk & board	Þ	Completed	6)
	11	February 1 st week	111 AH-02 11B-02	Current components in transistors (Two Port model)	Applications of logic gates in computers	Chalk & board		Completed	a
E	12	February 2 nd week	III A -03 III B-03	CB,CE and CC configurations, h-parameters Concept of transistor biasing, Operating point,		Chalk & board		Completed	6)
	B	February 3 rd week	111A-02 111B-03	Fixed bias and self bias (Qualitative only), Transistor as an amplifier, Concept of feedback		Chalk & board	ξ.	completed.	a
4	14	February 4 th week	11)A-02			Chalk & board	Solving exercise problems	Completed	a
	15	March 1 ^{str} week	V 111	-02 Revision		Buchidad	Seminars	Course ted.	an

Signature of the Faculty

ai, ej Physics & Electricule. Sheratiya Vidya Bhavan's Vivekananda College sistepurt. SecunderaDed-508 @84

Proville

Signature of the HOD

2